2013 BMW i8 Spyder

2013_BMW_i8_Spyder_Front_Right2013 BMW i8 Spyder Concept Car

BMW i8 Spyder Under the banner of its sub-brand BMW i, BMW Group is developing a BMW series of concepts of special purpose vehicles and ancillary services that meet mobility needs changing customer and redefine the understanding of personal mobility. And the adoption of smart technologies and innovative design, BMW i is undertaking a comprehensive approach largely defined by sustainability throughout the value chain.

2013_BMW_i8_Spyder_Front_Rear_Angle2013 BMW i8 Spyder Following BMW Concept Car the submission of BMW i3 and BMW i8, the BMW Group BMW i8 Spyder Concept to the mix. This third model BMW i represents the future of the vanguard and emotionally appealing mobility concepts. Its design sports headlines of the qualities of a lightweight two-seater convertible mixture, the dynamic capacity and efficiency with a very special aesthetic appeal.

2013_BMW_i8_Spyder_Front_Left2013 BMW i8 Spyder the combination of intelligent design light weight and state of the art hybrid technology permeates the BMW i8 Spyder Concept with true sports car performance, yet its fuel consumption is not greater than one would expect from a car smaller.

2013_BMW_i8_Spyder_Front_Interior2013 BMW i8 Spyder among the most striking features of the BMW i8 Spyder Concept are up-revolving doors, windows and a range of effects-oriented on-board equipment, including electric fences kept under a transparent tailgate. The sports car is based on innovative LifeDrive architecture is based on a modular lightweight construction and use of high quality high-tech materials. The BMW i8 Spyder Concept is a plug-in hybrid powered by an eDrive drivetrain combining a high performance electric motor and gasoline engine combustion. The lithium ion battery supplies the engine with the power can be recharged in a very short space of time from any household outlet. Overall, the car's minimum weight, low center of gravity and finely judged balance, along with a combined system output of 260 kW (354 hp), promise of excellent dynamic abilities, exceptional performance and driving pleasure rampant 2013 BMW i8 Spyder.

2013_BMW_i8_Spyder_Front_Side

2012 Dodge Challenger Rallye Redline

2012_Dodge_Challenger_Rallye_Redline_Wallpaper
2012 Dodge Challenger Rallye Redline

The Dodge Challenger evolution of the largest home of modern Dodge cars rear-drive performance, the Seventh Annual Spring Festival of LXS marked the perfect opportunity to unveil the new 2012 Dodge Challenger Rallye Redline. With its horsepower engine powerful and efficient paddle 305, which changes the transmission, suspension of performance designed to maximize muscle car is about 50/50 weight distribution for improved handling, and all new color improvement red hot style - This new challenge Dodge Challenger Rallye Redline delivers exactly what fans want.

2012_Dodge_Challenger_Rallye_Redline_Rear_angle
2012_Dodge_Challenger_Rallye_Redline_Muscle_Car
2012_Dodge_Challenger_Rallye_Redline_Interior
2012_Dodge_Challenger_Rallye_Redline

Dodge Dart 2012

Dodge Dart 2012

Dodge Dart 2013

Dodge Dart 2012

Dodge Dart interior

Dodge Dart 2012

Modified Toyota Camry


GET LATEST UPADATES BY JOINING US on TWITTER

Extreme Modified Red Cultus




GET LATEST UPADATES BY JOINING US on TWITTER

Audi A1

Audi A1 is definitely one of the most fair, most efficacious and newest models in the Audi Cars kindred. The bitty car is mostly sacred for urbanised and city swing and owns large dynamics and specifications. The car is transistorized to give comfortability from the highest people and country of driving.
audi a1
In Audi A1 are joint the Start-Stop scheme and S tronic , which are reducing the carbon expenditure and making the car many environmental. The live computer link driving in bad brave and period with the automatic functions, equivalent device for tenebrous and rainfall, lengthened lights help and MMI Steering nonnegative. All the extras are created to excrete your Audi A1 solon user-friendly and writer cosy.
The engines of Audi A1 are also from the highest class. The model has 3 engine options – 1.2 TFSI, 1.4 TFSI and 1.6 TDI. All engines have good dynamics, fast acceleration and low fuel consumption. The innovation technology has minimum internal friction and maximum torque. The technology uses two circles for cooling inside the engine, which are giving high productivity. Audi A1The fuel consumption of Audi A1 is between 3.8 liters per 100 km and 5.1 liters per 100 km in dependence with the engine type. The CO2 emissions are considered with EURO5 standard, which is making the car highly environmental and high quality.
The interior is made with high attention to the comfort and safety of the car. The main board is giving easy access to all the systems and navigation of the car. the main console is giving easy access to all the systems, which you may need and also is beautiful filling the stylish design of the car. The color schemes, which can be selected by the owner may tranform your car interior in many ways, according to your own choices. In all cases the the car is among the most popular models of Audi last months.

CFC VW GTI LeitGolf 2012 Pictures

CFC VW GTI LeitGolf 2012 Pictures

 CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures CFC VW GTI LeitGolf 2012 Pictures

Camshaft Timing

As with ignition timing and other forms of engine timing, accurate valve timing, or camshaft and cam timing as some people refer to it, is critical for achieving maximum horse power delivery from your engine. The first thing you need to accurately set your cam timing is a timing degree wheel, or a cam timing disc, that you can get from your camshaft manufacturer. You also need a dial gauge with a magnetic stand to find true top dead center (TDC) of the no. 1 cylinder and the correct valve lift, and an adjustable vernier gear.
It's quite easy to accomplish in theory, but a bit more complicated as you need to determine the exact point that full-lift is achieved and the same applies to accurately determining true TDC.

FINDING TRUE TDC

An adjustable vernier gear
An adjustable vernier gear
for accurate cam timing
It is easiest to start setting the cam timing before you fit the cylinder head to the engine as you need to accurately determine TDC using the dial gauge and accurately mark TDC on the crankshaft pulley. Usually, the car manufacturer would mark TDC on the crankshaft pulley, but you should never assume that it is accurate. Always verify that TDC is marked accurately even when it appears to be accurate when viewed with the naked eye. Remember that at the piston appears to be stationary at the end of the compression stroke for approximately 10° of crankshaft rotation. TDC is at the exact middle of this dwell period and even if it is just a few degrees out, it can have a significant effect on power delivery. Start by turning the engine to the TDC mark on the crankshaft pulley and attaching the cam timing degree wheel to the crankshaft pulley. Use a piece of stiff wire affixed to a nearby bolt and bent over the degree wheel as a temporary pointer to the engine block and set the pointer to TDC or 0° on the cam timing degree wheel. Place the base of the dial gauge on the engine block with the dial indicator or stylus resting on the top of the piston and zero the dial gauge. Rotate the engine back and forth a bit to ensure that the dial gauge is correctly zeroed. Now rotate the engine to a point before TDC where the dial gauge is at 0.2 inches or 0.5mm. Either note the reading from your pointer or mark the point on the degree wheel and then turn the engine just past TDC and stop when the dial gauge is at 0.2 inches or 0.5mm after TDC. Again, note the reading from your degree wheel or mark it on the degree wheel. TDC would be the exact center point between those two readings. If that exact point is not 0° or TDC on the degree wheel, rotate the engine until you reach that exact point on the degree wheel; then loosen the degree wheel and adjust it so that your pointer is at the TDC or zero point on the degree wheel. You can also mark that point accurately on the crankshaft pulley as this will be helpful when want to check or adjust the cam timing at a later stage, with the engine fully assembled and fitted, and will be useful when you need to set your ignition timing. Then remove the dial gauge, fit the cylinder head and install the camshaft, or camshafts if it's a twin-cam cylinder head, the vernier gear, and the camshaft timing belt or timing chain. With the engine at TDC it should be at the end of the compression stroke on the no. 1 cylinder, so the camshafts should be installed with the intake and exhaust valves of the no. 1 cylinder closed. In other words, the heel of the camshaft lobes for the no. 1 cylinder should be in contact with the intake and exhaust valves, and the lobes should form a "v". The engine should be completely assembled now with only the valve cover left to be attached.
Once the engine is at true TDC and you have it marked on the degree wheel and crankshaft pulley, you can remove the dial gauge and fit the cylinder head gasket and the cylinder head. Then install the camshaft, or camshafts if it's a twin-cam cylinder head, the vernier gear, and the camshaft timing belt or timing chain. With the engine at TDC it should be at the end of the compression stroke for the no. 1 cylinder, so the camshafts should be installed with the intake and exhaust valves of the no. 1 cylinder closed. In other words, the round heel of the camshaft lobes should be in contact with the intake and exhaust valves of the no. 1 cylinder, and the toe of the lobes should form a "v". The engine should be completely assembled now with only the valve cover, the intake system and the exhaust header left to be attached.

SETTING THE CAMSHAFT TIMING

The camshaft manufacturer or grinder should provide you with a valve timing diagram and a chart with the specified valve lift and the exact point at which that valve lift for the intake valves and the exhaust valves should be achieved. This may be for full-lift, or a specified amount of valve lift with the valve opening. The latter is more accurate as there is also some dwell at full-left, though not nearly as much as piston has at TDC. As indicated below, we can accurately find the point of full lift in the same way as we found true TDRC. Also, the point at which the valve lift is achieved is measured in degrees of crankshaft rotation, which is why we didn't remove the cam timing degree wheel from the crankshaft. Our next step is to attach the dial gauge to the cylinder head, with the stylus on the top of the retainer cap of intake valve of the no. 1 cylinder and zero the dial gauge. Now rotate the crankshaft to the specified point at which the specified valve lift should be achieved and read the amount of valve lift off the dial gauge. If it is not the same as the valve lift specified by the manufacturer, then loosen up the vernier gear and turn the camshaft until the correct valve height is achieved. Take care not to let the valves hit the crown of the piston while you're doing this adjustment as the valves could bend quite easily. With the specified valve lift of the intake valve occurring at the specified degrees of crankshaft rotation, tighten up the vernier gear. Your intake valve timing is now set. On a single-cam cylinder head you just need to verify that the exhaust valve also reaches the specified valve lift at the specified point. But on a twin-cam cylinder head you will need to set your exhaust valve timing by repeat this process for the exhaust valve of the no. 1 cylinder.

FINDING FULL VALVE LIFT

Should the camshaft manufacturer supply a chart which uses the point of full valve lift as a reference point for setting your cam timing, you would need to find the exact point of full valve lift. However, full valve lift is not one point as the camshaft also has a dwell period as they are designed to have the valve reach full life as quickly as possible and remain open for as long as possible, which is usually a good number of degrees. This can result in inaccurate cam timing as we would need the point exactly in the center of this dwell period. We can determine this point in similar way as we determined true TDC.
Start with the engine at TDC. Then turn the crankshaft until the toe of the camshaft lobe acting on the intake valve of the no. 1 cylinder is pointing more or less upward and the heel or the rounded part of the lobe is in contact with the valve, the rocker arm, or the valve lifter. The intake valve should now be fully closed. Set up the dial gauge with the stylus on the valve retainer cap of the intake valve and zero the dial gauge. Now rotate the crankshaft until the intake valve opens and is a short distance, say 0.1 inch or 0.25 mm, past full lift. Mark this point on the degree wheel. Then turn the crankshaft and stop when the intake valve starts to close and is again at 0.1 inch or 0.25 mm from full lift. Mark this point on the degree wheel. Needless to say, the point of full lift for the intake valve would be the mid-point between these two marks on the degree wheel. This point should coincide with the valve timing diagram or the chart supplied by the crankshaft manufacturer. If not, you would need to loosen up the vernier gear and adjust it as required. You should then repeat the process to ensure that the adjustment has been made correctly. On a twin-cam engine you would need to repeat this process to find the point of full lift for the exhaust valve, do the required adjustment on the vernier gear if needed and check the accuracy of nay adjustments you may have made.

Valves and the Valve Train

Proper attention to the valves and valve train components is important when modifying a cylinder head. In fact, the cylinder head porting we discussed previously would be less effective if we do not improve the air-flow round the valves. That is what we'll be looking at in this section. We'll also be looking at fitting larger valves, improving air-flow round the valve guide, and improving the valve train components. We've already discussed the camshafts and valve timing elsewhere so we won't be repeating that here.

THE VALVES

The first thing to do with the valves is to check them for wear. If you find any signs of wear, then you need to replace the valve. You need to check both the valve stem, and the valve face. You can check the valve stem using a micrometer, or you can gently run your index finger and thumb along the length of the valve stem and work your way right round the stem. You can visually check the valve face for wear. If you feel the slightest ridge on the valve stem or the valve face is badly pitted, replace the valves.
Most stock intake valves are made of EN52 steel while most stock exhaust valves are made of more wear resistant and stronger 21/4N Austenitic stainless steel. If you're building a modified street car, the stock valve material will be perfect, as long as the exhaust valves are made of 1/4N Austenitic stainless steel; however, if you're building a modified race car, it would be better to replace the stock intake valves with stainless steel valves, which are more wear resistant. As for the exhaust valves, you can easily verify whether they are made of 21/4N Austenitic stainless steel or EN52 steel as 21/4N Austenitic stainless steel is non-magnetic while EN52 steel is magnetic. So, if a magnet sticks to your exhaust valve head, it's EN52 steel. Some manufacturers use a bi-metal construction, with an EN52 steel valve stem micro welded to a 21/4N Austenitic stainless steel valve head; so check the valve head, not the valve stem.

FITTING LARGER VALVES

There are several things you need to take into account when deciding on bigger valves. The most obvious is that you need sufficient space in the combustion chamber for bigger valves. However, the valve head should be at least 2 mm from the combustion chamber and cylinder wall. Also, if you fit bigger valves, you'll need to open up the ports, which means you'll need to do more cylinder head porting to achieve the full power benefit of fitting bigger valves. But this also means that you'll have reduced the mean gas velocity at low RPM as bigger ports have lower mean gas velocity at low RPM. This translates into less bottom end power, especially on small bore engines.
It's not necessary to fit bigger exhaust valves on a naturally aspirated engine, even if it's on a heavily modified race car. This is because of the large pressure differential in the cylinder and the exhaust header. The pressure in the cylinder during the exhaust stroke, when the exhaust valve opens is usually five times higher than the pressure in the exhaust header. Air flows from a high pressure area to a low pressure area until equilibrium is reached; therefore the exhaust gasses are literally sucked out of the cylinder. The movement of the exhaust gasses is aided by the upward movement of the piston, which keeps the pressure in the cylinder while forcing even more exhaust gasses out through the exhaust valve. This also explains why the intake valve is bigger than the exhaust valve.

Basic Cylinder Head Porting

Although it sounds quite complicated, gas flowing and cylinder head porting are actually quite simple. The main aim of both gas flowing and cylinder head porting is to improve the air-flow through the cylinder head. Understanding what is good for improving air-flow, and what is bad for air low, i.e., what restricts air-flow, will go a long way to making good power gains from your cylinder head porting and gas flow work, so let’s begin there.

AIR-FLOW

As "Bad Ass" Bre and "Langer" have mentioned else on this site, the key to engine power and car performance is good air-flow in and out of the engine. Getting more air/fuel mixture into the engine and getting the exhaust gas out efficiently after combustion will get you more power. This is what is called Volumetric Efficiency (VE).
In technical terms, Volumetric Efficiency is the ratio of the volume of fresh air/fuel mixture that is drawn into the cylinder on the intake stroke, relative to the swept volume of the cylinder. Obviously, any exhaust gas that remains in the cylinder after the exhaust stroke will occupy some of the volume that fresh air/fuel mixture should occupy, and would reduce the Volumetric Efficiency of the engine. Thus, how well the exhaust gasses flow out the exhaust system is also important. Generally speaking, a multi-valve cylinder head will have a better Volumetric Efficiency, and hence will create better power, than a two-valve cylinder head. So if you have the option of fitting a two-valve cylinder head, or a multi-valve cylinder head, I’d go with the multi-valve cylinder head.

IMPROVING AIR-FLOW

Improving the Volumetric Efficiency of your engine requires that you improve the air-flow in and out of the engine. Fortunately, there are a number of things that you can do to improve air-flow, particularly through the cylinder head. The first is to ensure that nothing obstructs or restricts the air flow to and through the cylinder head, from the moment air enters the intake system until the moment it exits out of the tail pipe. However, certain obstructions in the cylinder head ports, such as the valve stem and the valve guide boss, cannot be eliminated completely but can be minimized by narrowing the valve stem without weakening it too much and shaping the valve guide boss into a ramp.
Another way of improving air flow through the cylinder head is to form the cylinder head ports and the combustion chamber into an even, smooth and consistent shape. The key word here is consistency; constituency not only in shape and size, but also consistency from one cylinder to the other. You can achieve consistency in shape by ensuring that there are no intrusions or cavities in the port, and that the port does not widen or narrow. Air-flow can be further optimized by eliminating sharp turns and bends in the path of the air-flow.

ENLARGING THE PORT

Enlarging the cylinder head port might be a good way of improving air-flow, but it has a major effect on mean gas velocity. A small port, relative to the cylinder, will have a high mean gas velocity at low RPM but it will struggle to fill the cylinder at high RPM. Thus Volumetric Efficiency will tail off at high RPM and power will fall off quickly. Conversely, a relatively large port will have a low mean gas velocity at low RPM. To maintain fuel atomization, i.e., to keep the fuel droplets suspended in the air flow, a high mean gas velocity is required. If the mean gas velocity is too low, gravity will pull the fuel droplets out of the air stream and will form puddles of fuel on the port floor. The result will be a loss of power and economy.

Performance Camshafts

The two important aspects of a camshaft, in terms of engine performance, are camshaft duration, or cam duration, and valve lift. Both cam duration and valve lift are determined by the camshaft lobe. Cam duration is the time that at least one valve of a cylinder remains open, i.e., off its valve seat, measured in degrees rotation of the crankshaft, while valve lift is the maximum distance the valve head travels from the valve seat.

VALVE LIFT

Valve lift is somewhat related to intake valve head diameter. An engine with an intake valve head diameter of 1.400in to 1.500in will generally perform best with a valve lift of 0.395in to 0.475in; an engine with a larger intake valve head diameter of 1.750in to 1.875in will generally perform best with a valve lift of 0.425in to 0.550in; and an engine with a large intake valve head diameter of 2.000in to 2.250in will generally perform best with a valve lift of 0.475in to 0.650in. But these are just rough guidelines; ultimately you will need to take some gas flow readings on a flow bench to determine the best valve lift for your particular engine.
A number of factors influence valve lift. The most important being the gap between the intake and exhaust valves, the piston to valve clearance and the intake charge pressure. These factors also influence cam duration. Another factor influencing valve lift is valve spring compression. Obviously, once the valve springs are fully compressed, it cannot give any more and the valve cannot be pushed further down into the combustion chamber.

CAM DURATION

As I've mentioned earlier, cam duration is measured in degrees rotation of the crankshaft, rather than the camshaft, and the crankshaft completes two full rotations for every rotation of the camshaft. In other words, with a 310 degree camshaft, the valves are open for only 155 degrees of actual camshaft rotation.
A performance camshaft for a naturally aspirated engine will have a duration in the range of 270 degrees to 310 degrees or more, with a 270 degree camshaft described as a 'mild' camshaft and a 310 or more degree camshaft being described as a 'wild' race camshaft. A stock camshaft usually has a duration of around 270 degrees but what differentiates a 270 degree performance camshaft from a stock camshaft is increased valve lift and a much faster rate of valve lift. With a faster valve lift rate, the valve reaches full lift quicker and remains at full lift for longer. This increases Volumetric Efficiency (VE) as more air flow in and out of the engine is possible.
A determining factor, when choosing camshaft duration is the purpose of the vehicle. The longer the duration of the camshaft, the further up the rev range the power band shifts, and the rougher the idle. Obviously, as the power band moves higher up the rev range, bottom end power is lost. Also, as cam duration and valve overlap increases, torque is lost. Fuel efficiency also decreases and exhaust emissions increase as valve overlap increases.
High performance camshafts start at 280 degrees of duration. These camshafts have increased valve overlap but not too much so emissions and fuel economy are not severely affected. These are generally good camshafts for modified street cars and produce good power from 2,500 RPM up to 7,000 RPM but they do not have a smooth idle because of the increased valve overlap.
A 290 degree camshaft requires more cylinder head work in terms of cylinder head porting and gas flowing as they work better when the engine's Volumetric Efficiency (VE) is improved. As you'd expect, these camshafts produce a fairly rough idle. These camshafts are generally good for rally cars and produce power from 3,000 RPM up to 7,500 RPM. A 300 degree camshaft requires even higher levels of VE, reaching the physical gas flowing limitations of a two valve cylinder head with a single camshaft. These camshafts are good for modified race cars and produce good power from 4,000 RPM up to 8,000 RPM. However, they have a very rough idle.
A camshaft with a duration of more than 300 degrees is an out and out race camshaft with a power band in the 4,500 RPM to 9,000 RPM rev range. To make effective use of a 300 degree camshaft, you need to ensure that the engine has a very high VE. You also need to ensure that the engine can rev beyond the red line of most stock engines.

VALVE OVERLAP

The limit for opening the exhaust valve is approximately 80° before bottom dead center (BBDC). Opening the exhaust valve any sooner tends not to increase power production but will shift the power band higher up the rev range and will reduce low end torque as downward pressure on the piston during the power stroke is released. The same applies to closing the intake valve where 80° after bottom dead center (ABDC) is the limit for increased power production.

Doing The Head

When it comes to getting the most power out of a naturally aspirated engine the key area that you must focus your attention on is the cylinder head. This is the one area that will potentially give you the greatest increase in engine power. Why? Well, as Langer explains in engine building and power basics, the key to increasing an engines horse power is to get the engine to ingest more air and be able to expel the resultant increase in exhaust gasses, in other words, getting the engine to pump more air by increasing the air-flow in and out of the engine.
On a motor car engine, there are three areas that can affect air-flow and where you can make improvements. These are:
  • The intake system, which includes the air filter, plenum and the intake runners.
  • The exhaust system, which includes the exhaust header, catalyst converter and the mufflers.
  • The cylinder head, which includes the cylinder head ports, valve area and the camshafts.
We've discussed the intake system and the exhaust system elsewhere on this web site so now it's time for us to turn our attention to modifying the cylinder head. However, in this section we're going to discuss a little bit more than just the cylinder head, we're going to discuss cylinder head porting, gas flowing and power tuning the cylinder head, old school style! We'll also be discussing performance camshafts, cam timing, valve timing and valve overlap.
A word of warning though, cylinder head porting and gas flowing is a rather advanced form of car modification and is not for the novice or for the faint of heart. Cylinder head porting is a skill that must be developed and honed by hours and hours of practice. If you're intent on trying cylinder head porting, the first thing that you need to know is the porting always begins by trial and error so if you're going to do your own cylinder head porting, start on a cylinder head that you can afford to total, in fact, start with a couple that you don't mind loosing. Otherwise you should leave cylinder head porting up to a professional with a flow bench. The other thing to note, is that cylinder head porting requires some rather expensive tools. You'll need a high-speed extended pneumatic die-grinder with carbide and steel grinders, and a high-pressure air compressor (no, we're not talking about turbochargers here) to power the grinder. You could use an electric die-grinder rather than a die-grinder, but electric die-grinders don't operate at a high-speed like pneumatic die-grinders. You could also use an electic drill rather than a die-grinder but you won't get the same results as you would with a longer, more agile and thinner die-grinder. An electric drill also does not operate at the high-speeds that a pneumatic die-grinder does.
A die-grinder
A Pneumatic Die Grinder
Right, if you've read all that, bought your air compressor and your die-grinder, and gotten hold of a few spare cylinder heads, despite our warnings, then we can move on and start modifying the cylinder head for extreme power. But remember that we did warn you. Right, we'll begin by looking at the camshaft before moving on to the equipment you'll require to port your cylinder head, the basics of gas flowing and cylinder head porting itself.

Beş Nesildir Yollarda. BMW 5 Serisi’nin tarihi

BMW 5 Serisi nin beş nesil modelinin satışları daha şimdiden 5,5 milyon adede ulaştı ve şimdi BMW 5 Serisi Sedan’ın başarılı hikayesinde yeni bir bölüm başlıyor.
Altıncı nesil BMW 5 Serisi, doğal olarak kendisinden önce gelenlerin bıraktığı büyük mirası takip ederken aslında kökleri çok daha eskilere dayanır. Henüz 1960′lı yıllarda BMW spor, şık, güçlü ve yenilikçi teknolojiye sahip, orta sınıf, dört kapılı sedan üreticisi olarak güçlü ve onu diğerlerinden ayıran bir profil geliştirdi. Dört kapılı notchback gövde, önde bulunan uzunlamasına yerleştirilmiş motor, arkadan itişli sürüş ve karmaşık yapıya sahip bir süspansiyon sunan BMW, bugün hala cazip kalabilen ve günümüze tamamen aktarılan klasik bir ilke edindi.
Bu, BMW’nin o güne kadar gördüğü en başarılı model serisini oluşturarak, BMW 1500, BMW 1800 ve BMW 2000′i “Yeni Sınıf” olarak lanse ettiği zamandaydı. Sedanların geliştirme ve üretim aşamalarında BMW tarafından bu modellerle ortaya konan ustalık, her birinin ayrı karakteri olan, modern ve çok tutulan otomobillerin üreticisi olarak şirketin dünya çapında bir atılım yapmasını sağladı.
1972 yılında Yeni Sınıf’tan BMW 5 Serisi’ne geçen BMW, yalnızca yeni isimler tanıtmadı, aynı zamanda tasarımda yeni bir çağ başlattı. Gerçekten de “5″ sayısı bu sınıftaki açık sürüş keyfi anlamını aldı. O zamandan beri BMW 5 Serisi, tasarımları sayesinde, üstün yürüyen aksam ve süspansiyon teknolojisiyle sağlanan sürüş dinamikleri ve konforunun benzersiz bir şekilde bir arada kullanımını özgün bir şekilde yansıtan, mükemmel uyum içinde dengelenen sportifliğin ve zarafetin simgesi haline geldi. Bu nedenle BMW 5 Serisi, Münih’li bu premium otomobil üreticisinin geliştirme konusundaki üstün yeteneklerini ortaya koyuyor.
1972: Yeni BMW 5 Serisi sahneye çıkıyor.
Sırasıyla 115 ve 130 bg üreten, dört silindirli sürüş motorlarına sahip BMW 520 ve BMW 520i, 1972 Frankfurt Otomobil Fuarı’nda Yeni Sınıf’ın yerini alacak model olarak sunuldu. Modelin ismi, BMW marka otomobillerin bugüne kadar aldıklar isimleri belirleyen yeni bir konsept yarattı. Başta bulunan “5″ sayısı seriyi belirtirken; onu takip eden diğer iki rakam ilgili modelin motor hacmini belirtir. Aynı zamanda bu model adları BMW 501 “Baroque Angel” ve ikon haline gelmiş bir spor otomobil olan BMW 507 gibi 1950′li yılların hatıralarını canlandırıyordu.
Tasarımındaki uzun ve düz hatlar, büyük pencereler ve alçak bel çizgisiyle ilk BMW 5 Serisi kendini gösterdi. Markaya özgü tasarım elemanları olan çift far ve C sütunundaki Hofmeister kıvrımı yeni tarz ve teknoloji ile yeniden yorumlayarak, Fransız tasarımcı Paul Bracq 1970′lerde çok özgün olan BMW tasarım dilinin temelini attı. Yolcuların güvenliğini sağlamak ve otomobilin deformasyon bölgelerini doğru şekilde hesaplayabilmek için BMW mühendisleri ilk defa çok geniş kapsamlı üstün bir bilgisayar teknolojisi kullandı.
Üretimin ikinci yılında BMW 525′in tanıtılmasıyla ilk altı silindirli otomobil de pazara giriş yapmış oldu. Bu son model otomobilin güçlü ve aynı zamanda iyileştirilen motoru, 145 bg’lik etkileyici bir güç sağlıyordu. Daha fazla güce duyulan bu istek, daha sonraki yıllarda model yelpazesini genişletmek için en önemli nedenlerden biri haline geldi: 1972 yılında kurulan BMW Motorsport GmbH, 1980 yılında 218 bg (160 kW) gücündeki altı silindirli motora sahip BMW M 535i’yi tanıtarak olağanüstü bir girdi sağladı.
1981: İkinci nesil, ilk dizel.
Neredeyse 700.000 adet satış sağlayan ilk nesil BMW 5 Serisi, Yeni Sınıf’ın pazardaki başarısının iki katından fazlasını elde etti. 1982 yılında çıkarılan bir sonraki model de net hatlar ve büyük pencereleriyle tasarıma sadık kalarak başarı öyküsünü devam ettirdi.
Daha da çarpıcı ön ve arka tasarımıyla yeni BMW 5 Serisi, dış boyutlarının neredeyse aynı kalmasına rağmen yollarda çok daha fazla dikkat çekti ve yeteneklerini gösterdi. Mühendislerin iyileştirme çalışmaları ve akıllı hafif malzeme teknolojisi iç mekanda daha fazla alan, mükemmel ağırlık dağılımı ve geliştirilmiş yolcu güvenliği sağladı. Çift mafsallı ön aks ve yarım arka aks taşıyıcıya sahip yeni geliştirilen süspansiyon, özellikle de bu yeni modelin sunduğu sürüş konforunu artırmada işe yaradı. Bu noktada BMW 5 Serisi’nde, yol bilgisayarı yardımıyla kilitlenmeyi önleyici fren sistemlerinden elektronik yakıt enjeksiyonuna kadar değişen modern elektronik sistemler kullanılmaya başlandı.
Pazara girmesinin hemen ardından bu yeni sedan, geniş bir model yelpazesi ve gücü 90 ile 184 bg arasında değişen motorlarla sunuldu. 1984 yılında oldukça spor bir versiyonu tanıtılmış olmasına rağmen 218 bg’lik güce sahip BMW M 535i bu sefer Motorsport GmbH’nin son sözü değildi. Onun yerine Motorsport GmbH, 1985 Frankfurt Otomobil Fuarı’nda gururla Spor Sedan’ın simgesi olan BMW M5′i sundu. Dışarıdan değerlendirildiğinde diğer modellerden güçlükle ayırt edilebilen BMW M5’te, tavizsiz sürüş dinamikleri sağlamak için metal levhanın altı baştan sona optimize edildi. Güç, dört valf teknolojisi ve en az altı kelebek valfi bulunan sıralı altı silindirli motordan geliyordu. Efsanevi BMW M1′den türetilen, önceden yalnızca en iyi spor otomobiller tarafından sunulan, üstün itiş gücü üreten bu motorun gücü 286 bg’di.
BMW’nin 1983 yılında BMW 524td ile büyük çekişmelerin yaşandığı dizel pazarına girmeye karar vermesi devrim niteliğindeydi. Markanın kendine özgü karakterini bir dizelle sunmak için tek seçenek otomobile güçlü ve iyileştirilmiş turbo dizel bir motor koymaktı.
115 bg maksimum motor gücüne sahip, 2,4 litre, sıralı altı silindirli motor bu gereklilikleri sağladı ve BMW 524td kendi sınıfındaki tüm dizel otomobiller arasında en iyi performansı gösterirken aynı zamanda en yüksek yakıt tasarruf standardını sağladı. Dizel otomobillere kuşkuyla yaklaşanlar bile üstün güç ve olağanüstü tasarrufun yenilikçi birleşiminden etkilenmişlerdi.
Spor performans ve üstün tasarrufu bir araya getirmek için dizel pazarına girmek BMW’nin tek seçeneği değildi. Aksine, tam da o zamanlarda BMW, özellikle yakıt tasarrufu sağlayan teknolojiler geliştirmek üzerine çok sayıda çalışmayı ve yeniliği tamamlamış ve alternatif enerji kaynakları aramaya başlamıştı. Bu yeniliklerin çoğu, zaman içerisinde seri üretime alındı, diğerleri ise uzun dönem araştırma projelerinin temellerini attı. Bunun bir örneği daha 1976 yılında tanıtılan ve birinci nesil BMW 5 Serisi’ni temel alan hidrojen yakıtlı test otomobiliydi.
Turbo dizelin yanında, BMW 5 Serisi’nin oldukça verimli bir benzinli modeli de en başından beri seri üretim için uygun olduğunu gösterdi: BMW 525e altı silindirli bir motora sahipti ve tutarlı bir şekilde üstün çekiş gücü ve tasarrufu bir araya getirmek için yapıldı. 2,7 litre hacme sahip ve adını Yunan harfi “eta”dan alan sürüş motoru, etkin bir şekilde 4.250 dd seviyesinde 125 bg’lik maksimum motor gücü ve yalnızca 3.250 dd’deki 240 Nm’lik maksimum tork üretebiliyordu. Yeni motor elektronikleri, optimize edilmiş ağırlık ve yüksek hızlarda tasarruf fonksiyonu bulunan beş ileri şanzıman, bu modelin üstün verim sağlamasına yardımcı olan diğer özelliklerdir.
İkinci nesil BMW 5 Serisi yedi yıl üretildikten sonra yerine yeni bir seri getirildi. Bu süre boyunca satışları yeni bir rekor kırarak 722.000 adede ulaştı.
1988: Üçüncü nesil BMW 5 Serisi. İlk kez touring olarak BMW 5 Serisi.
BMW 1984 yılında katalizör teknolojisini tanıtmaya başlarken, BMW 5 Serisi en başından beri sadece bu yüksek emisyon yönetimi standardıyla donatılmıştı. 1988 yılındaki başlangıçtan beri ortaya çıkan ilk modellerin (BMW 520i, BMW 525i, BMW 530i, BMW 535i ve BMW 524td) hepsi altı silindire ve elektronik yakıt enjeksiyonuna sahipti. Güç aralığı 115′ten 211 bg’ye yükselmişti.
315 bg olarak üretilen ve daha sonra 1992 yılında 340 bg’ye yükseltilen motor gücüne sahip yeni BMW M5 de kısa süre sonra tanıtıldı.
Bunu 1992 yılında sekiz silindirli iki modeli, BMW 530i ve BMW 540i, 1993 yılında dört silindirli motorla temel model olarak tanıtılan BMW 518i takip etti. Bu arada, dört valf teknolojisinden ve değişken Vanos egzantirik mili yönetiminden faydalanan altı silindirli motorlar daha fazla güç, tork ve verimlilik kazandılar.
Tam olarak belirlenen deformasyon alanları ve çok daha sağlam yolcu bölmesiyle BMW 5 Serisi’nin üçüncü nesli, yolcu güvenliği alanına yeni standartlar getirdi. Titizlikle inceltilen süspansiyon bir seçenek olarak elektronik kontrollü amortisörlerle birlikte kullanılabiliyorken bir diğer seçenek de hıza duyarlı Servotronic direksiyon asistanıydı. ASC Otomatik Denge Kontrolü de, kilitlenmeyi önleyici fren sisteminin yanında ilk kez kullanılıyordu.
1991 yılında piyasaya sürülen elektronik dört tekerlekten çekişli BMW 5 Serisi’nin önden arkaya tam değişken güç dağılımı konsepti ile arka aks diferansiyel kilidi, karşılaştırmalı testlerde o güne kadarki tüm dört tekerlekten çekiş sistemlerinden daha üstün olduğunu kanıtladı.
Bir önceki kuşağı ile karşılaştırıldığında, üçüncü nesil BMW 5 Serisi yine yeni tasarımı sayesinde daha uzundu ve çok daha geniş iç hacme sahipti. Gerçekten de Baş Tasarımcı Claus Luthe kılavuzluğunda yaratılan yeni sedan, sportif zarafet ve akıcı çizgileri özgün bir kama şekliyle birleştirdi. Tarz sahibi bu karakter, daha sonra tasarımcılar tarafından BMW 5 Serisi Touring’e aktarıldı; 1992 Frankfurt Otomobil Fuarında ortaya çıkarılan bu eşsiz beş kapılı otomobil yeni bir görünüm ve B sütunu arkasında yepyeni özellikler sunuyordu.
Ses yalıtımına çok önem verilmişti, gövde içerisindeki ses neredeyse bir sedandakiyle aynıydı. Çok geniş iç alan, açık bir şekilde akustik etki ve gürültüler için ideal bir rezonans gövdesi oluşturuyordu. BMW 5 Serisi Touring, başından itibaren arka aks üzerinde otomatik yükseklik ayarı ile donatılmıştı.
Touring modelinde, sedanda kullanılan neredeyse tüm motorlar kullanılabiliyordu ve bir diğer seçenek olarak da dört tekerlekten çekişle de gelebiliyordu. 1992 yılında BMW M5 Touring seriye katıldı. Bu beş kapılı otomobilin başarılı satışları açık bir şekilde BMW’nin daha çok pratik değeri çekici tasarımla birleştirme konseptini onayladı:
BMW 5 Serisi Touring’in 1996 yılına kadar olan toplam satışı yaklaşık 125.000 adede ulaştı ve üçüncü nesil BMW 5 Serisi’nin dünya çapındaki toplam satışları 1,3 milyon adedi aştı.
1995: Dördüncü nesil ilk kez hafif metal ala şı ml ı süspansiyonla.
BMW 5 Serisi’nin dördüncü nesli 1995 Frankfurt Otomobil Fuarı’nda sahneye çıkarken önceki modelin evrimsel bir şekilde geliştirilmesiyle sportif ve zarif tarza sahip bir tasarım sundu. Ön taraftaki göze çarpan bir özellik cam bir kapağın arkasındaki çift yuvarlak farlardı. 2000 yılında buna konumlandırma ve gündüz sürüşünde kullanılan BMW’ye özgü ışık halkaları eklendi.
1997 yılında tanıtılan hem sedan hem de touring, bir kez daha yolcu bölümünde daha fazla alan sundu. Çok fonksiyonlu direksiyon, navigasyon sistemi, aktif koltuklar ve Dinamik Denge Kontrolü özelliklerine sahip BMW 5 Serisi kendi sınıfının fazlasıyla yüksek teknolojiye sahip bir üyesi olarak bilindi.
Daha fazla sürüş dinamikleri ve güvenlik sağlamak adına gövde, çok daha yüksek bir dayanıklılığa sahipti ve dördüncü nesil BMW 5 Serisi, neredeyse tamamı hafif metal alaşımından yapılan ve geniş ölçekli üretilen ilk otomobildi. Yeni geliştirilen ve tamamı alüminyumdan oluşan güç üniteleri de otomobilin ağırlığının düşmesine yardımcı oldu.
Yeni model, 150 ile 193 bg maksimum motor gücü üreten, sıralı altı silindirli motorlarla pazara sunuldu. Teknik yenilikler hem benzinli hem de dizel motorlara daha fazla güç sağladı ve yakıt tüketimini daha da düşürdü. 1996 yılında bir kez daha iki V8 motor tanıtıldı ve 1998 yılında BMW tarafından o tarihe kadar üretilen en güçlü motora sahip olan yeni BMW M5 pazara girdi: Bu 400 bg (294 kW)’lik motor göze çarpan diğer özelliklerinin yanında merkezkaç kuvvetleri için kumanda edilen yağ temini ve elektronik olarak kontrol edilen bağımsız kelebek valfleri gibi özelliklere sahipti.
BMW 5 Serisi’nin dördüncü nesli bir kez daha satış rekorları kırdı ve 2004 yılının başlarında üretimi sona ererken 1,47 milyon adede ulaştı.
2003: Be ş inci nesil BMW 5 Serisi – ilerici ve verimli.
2003 yılında tanıtılan beşinci nesil BMW 5 Serisi etkileyici tasarımı ve yenilikçi teknolojisiyle en başından beri kendini gösterdi. Bir kez daha 2004 yılında çıkarılan sedan ve touring etkin güvenlik, sürücü yardım sistemleri ve verimlilik konularına yeni standartlar getirdi. BMW’nin iç bükey ve dış bükey yüzeyleri, ön ve yanlardan arkaya akıcı geçişlere sahip kendine özgü tasarım dili, BMW 5 Serisi’nin beşinci versiyonuna oldukça karakteristik bir hava kattı. Net fonksiyonlara sahip iç mekan, en başta standart olarak gelen iDrive kontrol sistemini vurgular.
Alüminyum veya sırasıyla kompozit alüminyum/magnezyum krank kutusu ile motorlar ve otomobilin hafif alaşımlı ön kısmı ön-arka ağırlığın çok iyi bir şekilde dengelenmesine imkan sağladı. O zaman geliştirilen bir diğer parça da aynı şekilde alüminyumdan üretilen, tek parça arka akstır.
Bir diğer önemli yenilik de, özellikle geniş fonksiyon yelpazesiyle otomobilin mükemmel süspansiyon teknolojisine destek veren DSC Dinamik Denge Kontrolüdür. Aynı üstünlük ilk defa Aktif Direksiyon ile elektronik süspansiyon ayarlı ve kaymayı engelleyen denge yönetimine sahip Adaptive Drive teknolojileri ile sağlandı. Sürücü yardım sistemleri alanında göze çarpan unsurlar olarak BMW 5 Serisi, Head-Up Display, BMW Gece Görüşü, Dur & Kalk ve Şeritten Terk Uyarı Sistemi’ne sahip Aktif Cruise Control gibi üstün teknolojilere sahipti.
BMW 5 Serisinde kullanılan motor yelpazesi, BMW 520i’de 170 bg (125 kW)’lik ve BMW 550i’de 367 bg (270 kW) arasında değişen altı benzinli ve dört dizel motorla genişletilmişti. BMW M5 ve BMW M5 Touring’de ise bağımsız kelebek valfler ve dinamik yağ temini özellikleriyle 507 bg (373 kW) maksimum çıkış gücüne sahip 5,0 litrelik V10 yüksek hız motorları kullanılıyordu.
2007 yılından itibaren beşinci nesil BMW 5 Serisi’nin tüm sürümleri, standart olarak modelden modele uygun şekilde değişiklik gösteren çok sayıda BMW EfficientDynamics teknolojileriyle geliştirildi. Fren Enerjisi Geri Kazanımı, vites değişim göstergesi, aktif hava kapağı kontrolü ve talep üzerine sunulan yan donanımlar, tüm modellere kendi sınıflarında eşi benzeri bulunmayan bir performans ve yakıt tasarrufu dengesi sağladı. Üst orta sınıftaki en yüksek verimlilik ölçütünü, 177 bg (130 kW)’lik motor gücünün yanında AB test sürüşlerinde 100 km’de 5,1 litre ortalama yakıt tüketimi ve 136 g/km CO2 emisyon değerlerine sahip BMW 520d ortaya koydu.
BMW 5 Serisi‘nin çarpıcı tasarım, yenilikçi teknolojiler ve üstün verimlilik sunan beşinci nesli, bu model ailesinin başarılarla dolu tarihini kesintisiz devam ettirdi. 2007′nin sonlarına doğru bu model neslinin dünya çapındaki satışları bir milyon adedi geçerken 2005′ten 2008 yılına kadar BMW 5 Serisi kendi sınıfında dört yıl arka arkaya en çok satan otomobil oldu. Kısa süre sonra, Ocak 2008′de, BMW’nin Dingolfing Fabrikası, 1973 yılından beri üretim hattından çıkan beş milyon BMW 5 Serisi otomobil ile çok etkileyici bir yıldönümü kutlaması yaptı.
Related Posts Plugin for WordPress, Blogger...